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Abstract
This paper is devoted to the extension of the recently proposed conditional
symmetry method to first-order nonhomogeneous quasilinear systems which
are equivalent to homogeneous systems through a locally invertible point
transformation. We perform a systematic analysis of the rank-1 and rank-2
solutions admitted by the shallow water wave equations in (2 + 1) dimensions
and construct the corresponding solutions of the rotating shallow water wave
equations. These solutions involve in general arbitrary functions depending
on Riemann invariants, which allow us to construct new interesting classes of
solutions.
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1. Introduction

In this paper, we use the conditional symmetry method (CSM) in the context of Riemann
invariants as presented in [9] to obtain conditionally invariant solutions of the rotating shallow
water wave (RSWW) equations with a flat bottom topography [14]

�(x, u) :

⎧⎨
⎩

ut + uux + vuy + ghx = 2�v, � ∈ R,

vt + uvx + vvy + ghy = −2�u,

ht + uhx + vhy + h(ux + vy) = 0,

(1.1)

where we denote by x = (t, x, y) and u = (u, v, h) the independent and dependent variables,
respectively. Here, u and v stand for the velocity vector fields, h represents the height of the
fluid layer, g is the gravitational constant and � characterizes the constant angular velocity of
the fluid around the z-axis induced by a Coriolis force. It can be proved using the chain rule,
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see [3], that if a set of functions u′(t ′, x ′, y ′), v′(t ′, x ′, y ′), h′(t ′, x ′, y ′) satisfies the irrotational
shallow water wave (SWW) equations

�′(x, u) :

⎧⎨
⎩

u′
t ′ + u′u′

x ′ + v′u′
y ′ + gh′

x ′ = 0,

v′
t ′ + u′v′

x ′ + v′v′
y ′ + gh′

y ′ = 0,

h′
t ′ + u′h′

x ′ + v′h′
y ′ + h′(u′

x ′ + v′
y ′) = 0,

(1.2)

then the functions u(t, x, y), v(t, x, y), h(t, x, y) defined by

t ′ = − 1

2�
cot (�t), x ′ = 1

2
(y − x cot (�t)), y ′ = −1

2
(x + y cot (�t)),

u′ = −1

2
(u sin (2�t) − v(1 − cos (2�t)) − 2�x),

v′ = −1

2
(u(1 − cos (2�t)) + v sin (2�t) − 2�y), h′ = h

2
(1 − cos (2�t)),

(1.3)

form a solution of the RSWW equations.
The task of constructing invariant solutions of systems (1.1) and (1.2) using the classical

Lie approach was undertaken by several authors. A systematic classification of the subalgebras
of the symmetry algebra of the equations describing a rotating shallow water flow in a rigid
ellipsoidal basin was performed in [12] and many invariant solutions were obtained. In [3],
the author introduced transformation (1.3) to generate invariant solutions of (1.1) from known
invariant solutions of the homogeneous system (1.2), previously computed in [2] .

The CSM approach to be used in this paper was developed progressively and applied in
[4, 8, 9] in order to construct rank-2 and rank-3 solutions to the equations governing the flow
of an isentropic fluid. The main feature of this approach, which proved to be less restrictive
than the generalized method of characteristics [9], is that the obtained rank-k solutions can
depend on many arbitrary functions of many independent variables, called Riemann invariants.
Through a judicious selection of these arbitrary functions, it is possible to construct solutions of
the considered homogeneous system which are bounded everywhere, even when the Riemann
invariants admit a gradient catastrophe [4]. Although the applicability of the CSM approach is
technically restricted to first-order homogenous hyperbolic quasilinear systems, the objective
of the present paper is to apply it to the RSWW equations (1.1) through transformation (1.3).
Large classes of implicit rank-k solutions are then constructed for the SWW and RSWW
equations, including bumps, kinks and periodic solutions.

The paper is organized as follows. We give in section 2 the symmetry algebra of the
system (1.1) and construct the point transformation (1.3) relating systems (1.1) and (1.2).
Section 3 contains a brief review of the conditional symmetry method in the context of
Riemann invariants for homogeneous systems and we present many interesting rank-1 and
rank-2 solutions to the SWW equations (1.2) together with corresponding solutions to the
RSWW equations (1.1). Results and perspectives are summarized in section 4.

2. The symmetry algebra

The classical Lie symmetry algebra admitted by the system (1.1) is generated by vector fields
of the form

X = ξ 1(x, u)∂t + ξ 2(x, u)∂x + ξ 3(x, u)∂y + η1(x, u)∂u + η2(x, u)∂v + η3(x, u)∂h. (2.1)

The requirement that the generator (2.1) leaves the system (1.1) invariant yields an
overdetermined system of linear equations for the functions ξ i(x, u) and ηi(x, u), i = 1, 2, 3
[13]. Since this step is completely algorithmic and involves tidy computations, many computer
programs have been designed to derive these determining equations, see [10] for a complete
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Table 1. Commutation relations for the Lie symmetry algebra of the RSWW equations.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Y1 0 0 0 0 −Y2 −Y1 0 −2�Y3 −Y1

Y2 0 0 0 Y1 −Y2 0 −2�Y4 −Y2

Y3 0 0 −Y4 −Y3 2�Y1 0 Y3

Y4 0 Y3 −Y4 2�Y2 0 Y4

Y5 0 0 0 0 0
Y6 0 0 0 0

Y7 0 −4�2Y9 −2Y7

Y8 0 2Y8

Y9 0

review. The package symmgrp2009.max [1, 11] for the computer algebra system Maxima
has been used in this work to obtain the determining equations of the RSWW equations (1.1)
and to solve them partially in a recursive way. Solving them shows that the Lie algebra L of
point symmetries of the RSWW equations (1.1) is nine dimensional and is generated by the
following differential generators:

P0 = ∂t , P1 = ∂x, P2 = ∂y, L = y∂x − x∂y + v∂u − u∂v,

G1 = − 1

2�
cos(2�t)∂x +

1

2�
sin(2�t)∂y + sin(2�t)∂u + cos(2�t)∂v,

G2 = 1

2�
sin(2�t)∂x +

1

2�
cos(2�t)∂y + cos(2�t)∂u − sin(2�t)∂v,

D = x∂x + y∂y + u∂u + v∂v + 2h∂h,

Z1 = sin(2�t)∂t + � [x cos(2�t) + y sin(2�t)] ∂x + � [y cos(2�t) − x sin(2�t)] ∂y

+ � [(2�y − u) cos(2�t) − (2�x − v) sin(2�t)] ∂u

−� [(2�x + v) cos(2�t) + (2�y + u) sin(2�t)] ∂v − 2�h cos(2�t)∂h,

Z2 = cos(2�t)∂t + � [y cos(2�t) − x sin(2�t)] ∂x − � [x cos(2�t) + y sin(2�t)] ∂y

−� [(2�y − u) sin(2�t) + (2�x − v) cos(2�t)] ∂u

+ � [(2�x + v) sin(2�t) − (2�y + u) cos(2�t)] ∂v + 2�h sin(2�t)∂h.

(2.2)

The geometrical interpretation of these generators is as follows. The system (1.1) is left
invariant by the translations P0, P1, P2 in the space of independent variables since it is
autonomous. The element L generates a rotation of the whole coordinate system while
G1 and G2 represent helical rotations. The system is also left invariant by the dilation D and
the two conformal transformations Z1 and Z2.

The Levi decomposition L = F � N of the symmetry algebra L can be exhibited by
considering its commutation table (table 1) in the following basis:

Y1 = P2 − 2�G2, Y2 = −(P1 + 2�G1), Y3 = P1 − 2�G1, Y4 = P2 + 2�G2,

Y5 = −L, Y6 = D, Y7 = P0 − �L − Z2, Y8 = P0 − �L + Z2, Y9 = − 1

�
Z1.

(2.3)

Here F = {Y1, Y2, Y3, Y4, Y5, Y6} is a maximal solvable ideal and N = {Y7, Y8, Y9} is
isomorphic to the simple Lie algebra su(1, 1). Following the procedure presented in [6, 7],

3
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we introduce a set of canonical variables associated with the Abelian subalgebra {Y1, Y2, Y7}
and defined by

Y7t
′ = 1, Y1t

′ = 0, Y2t
′ = 0,

Y7x
′ = 0, Y1x

′ = 1, Y2x
′ = 0,

Y7y
′ = 0, Y1y

′ = 0, Y2y
′ = 1,

Y7u
′ = Y7v

′ = Y7h
′ = Y1u

′ = Y1v
′ = Y1h

′ = Y2u
′ = Y2v

′ = Y2h
′ = 0,

(2.4)

to bring the system (1.1) into an equivalent autonomous form. It turns out that the set of
variables (1.3) satisfies the system (2.4) so that when expressed in these variables, the vector
fields Y1, Y2, Y7 are rectified to the canonical form

Y7 = ∂t ′ , Y1 = ∂x ′ , Y2 = ∂y ′ .

Moreover, using the chain rule, it is easily found that the system (1.1) transforms to

u′
t ′ + u′u′

x ′ + v′u′
y ′ + gh′

x ′ = 0,

v′
t ′ + u′v′

x ′ + v′v′
y ′ + gh′

y ′ = 0,

h′
t ′ + u′h′

x ′ + v′h′
y ′ + h′(u′

x ′ + v′
y ′) = 0,

which shows the equivalence between systems (1.1) and (1.2). The next section
demonstrates how the point transformation (1.3) can be used to construct implicit solutions of
equations (1.1) expressed in terms of Riemann invariants.

3. Conditionally invariant solutions of the SWW and RSWW equations

We present in this section a brief description of the CSM approach developed progressively
in [9] and [8] and obtain several rank-1 and rank-2 solutions of the SWW equations in closed
form. We illustrate the process of construction of the corresponding solutions for the RSWW
equations with several interesting examples. The SWW equations (1.2) can be written in a
matrix evolutionary form as

ut + a1(u)ux + a2(u)uy = 0, (3.1)

where a1, a2 are the 3 × 3 matrix functions given by

a1 =
⎛
⎝u 0 g

0 u 0
h 0 u

⎞
⎠ , a2 =

⎛
⎝v 0 0

0 v g

0 h v

⎞
⎠ .

The objective is to construct rank-k solutions, k = 1, 2, of the system (3.1) expressible in
terms of Riemann invariants. To this end, we look for solutions of (3.1) defined implicitly by
the relations

u = f(r1(x, u), . . . , rk(x, u)), rA(x, u) = λA
i (u)xi,

det
(
λA

0 I3 + a1(u)λA
1 + a2(u)λA

2

) = 0, A = 1, . . . , k,
(3.2)

for some function f : R
k → R

3, where I3 is the 3 × 3 identity matrix. A solution of the form
(3.2) will be called a rank-k solution if rank(∂u) = k in some open set D ⊂ R

3 around the
origin, where ∂u stands for the Jacobian matrix of u in the original variables. The functions
rA(x, u) are called the Riemann invariants associated with the linearly independent wave
vectors λA = (

λA
0 , �λA

) = (
λA

0 , λA
1 , λA

2

)
, which are obtained by solving the dispersion relation

of equation (3.1) for the phase velocity λ0. This relation takes the form

det (λ0I3 + a1(u)λ1 + a2(u)λ2)

= (λ0 + λ1u + λ2v)(λ0 + λ1u + λ2v +
√

gh)(λ0 + λ1u + λ2v −
√

gh) = 0. (3.3)

4
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The wave vectors are thus of the entropic (E) and acoustic (S) type defined respectively by

(i) λE = (−λ1u − λ2v, λ1, λ2),

(ii) λSε = (−(λ1u + λ2v + ε
√

gh), λ1, λ2), |�λ|2 = λ1
2 + λ2

2 = 1, ε = ±1.
(3.4)

We associate with each of them the corresponding Riemann invariant

(i) rE = −(λ1u + λ2v)t + λ1x + λ2y,

(ii) rSε = −(λ1u + λ2v + ε
√

gh)t + λ1x + λ2y, |�λ|2 = 1, ε = ±1.
(3.5)

The analyses of rank-k solutions for the cases ε = ±1 are very similar; hence, we restrict
ourselves to the positive case.

It is convenient when studying solutions of type (3.2) to write the system (3.1) in the form
of a trace equation

Tr[Aμ(u)∂u] = 0, μ = 1, . . . , l, (3.6)

where Aμ(u) are now 3 × 3 matrix functions of u, defined by

A1 =
⎛
⎝1 0 0

u 0 g

v 0 0

⎞
⎠ , A2 =

⎛
⎝0 1 0

0 u 0
0 v g

⎞
⎠ , A3 =

⎛
⎝0 0 1

h 0 u

0 h v

⎞
⎠ .

The construction of rank-k solutions through the conditional symmetry method is achieved by
considering an overdetermined system, consisting of the original system (3.1) together with a
set of compatible first-order differential constraints (DCs),

ξ i
a(u)uα

i = 0, λA
i (u)ξ i

a(u) = 0, a = 1, . . . , 3 − k, A = 1, . . . , k, (3.7)

for which a symmetry criterion is automatically satisfied. Here and throughout this work, we
use the summation convention over repeated indices. Introducing the functions

x̄1 = r1(x, u), . . . , x̄k = rk(x, u), x̄k+1 = xk+1, . . .

ū = u, v̄ = v, h̄ = h,
(3.8)

as new coordinates on R
3 × R

3 space, the Jacobi matrix ∂u now reads

∂u = ∂f

∂r

(
Ik − (η0t + η1x + η2y)

∂f

∂r

)−1

λ, (3.9)

where

λ = (
λA

i

) ∈ R
k×3, r = (r1, . . . , rk) ∈ R

k,
∂f

∂r
=

(
∂f α

∂rA

)
∈ R

3×k,

ηa =
(

∂λA
a

∂uα

)
∈ R

k×3, a = 0, . . . , 2,

(3.10)

so that the system (3.6) is now expressed as

Tr

[
Aμ(u)

∂f

∂r

(
Ik − (η0t + η1x + η2y)

∂f

∂r

)−1

λ

]
= 0, μ = 1, . . . , l. (3.11)

Requiring that the system (3.11) be satisfied for all values of the coordinates (t, x, y), the
following result holds (see [9] for a general statement and a detailed proof).

Proposition 1. The nondegenerate quasilinear hyperbolic system of first-order PDEs (3.1)
admits a (3−k)-dimensional conditional symmetry algebra L, k � 2, if and only if there exists
a set of (3 − k) linearly independent vector fields

Xa = ξ i
a(u)

∂

∂xi
, a = 1, . . . , 3 − k, det

(
ai(u)λA

i

) = 0, λA
i ξ i

a = 0, A = 1, . . . , k,

5
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which satisfy, on some neighborhood of (x0, u0) ∈ X × U , the trace conditions

k = 1 : (i) tr

(
Aμ ∂f

∂r
λ

)
= 0, μ = 1, . . . , 3, (3.12)

k = 2 : (i) tr

(
Aμ ∂f

∂r
λ

)
= 0, (ii) tr

(
Aμ ∂f

∂r
ηa

∂f

∂r
λ

)
= 0, a = 0, . . . , 2,

(3.13)

where the relevant matrices are defined in (3.10). Solutions of the system which are invariant
under the Lie algebra L are precisely rank-k solutions of the form (3.2).

Note that the vector fields Xa, a = 1, . . . , 3−k, are not symmetries of the original system.
Nevertheless, as we will show, they can be used to build solutions of the overdetermined system
composed of (3.1) and the differential constraints (3.7).

To construct solutions of the RSWW equations, we assume that a solution of the SWW
equations (1.2),

u = u(r), v = v(r), h = h(r), r = (r1, . . . , rk),

has been obtained from equations (3.12) or (3.13). Then the Riemann invariants rA can be
expressed as a graph

rA = rA(x, u) = rA(x,
(r)) (3.14)

in the (r, x) space for some function 
 : R
k → R

q . The change of variables (1.3) induces a
transformation of the independent variables in this space,

t → − 1

2�
cot (�t), x → 1

2
(y − x cot (�t)), y → −1

2
(x + y cot (�t)), (3.15)

and we denote by r̃ = (r̃1, . . . , r̃k) the resulting functions in the new variables. Then,
according to transformation (1.3), the functions

ũ = −u(r̃) cot (�t) − v(r̃) + �(y + x cot (�)),

ṽ = u(r̃) − v(r̃) cot (�t) − �(x − y cot (�t)),

h̃ = h(r̃) csc2 (�t)

(3.16)

form a solution of the RSWW equations (1.1). Even though transformation (1.3) is singular
at every time t = π

2�
(2n + 1), n ∈ N, we show that it is possible to obtain implicit solutions

defined in a neigborhood of the origin t = 0.

3.1. Rank-1 solutions

The reduction procedure outlined above has been applied to obtain rank-1 and rank-2 solutions
of the SWW equations (1.2) and their corresponding solutions of the RSWW system (1.1). We
present here several rank-1 solutions, also called simple waves, associated with the different
types of wave vectors (3.4). Note that in the case where k = 1, the CSM and the generalized
method of characteristics agree [9].

(i) Similarly, simple entropic-type waves are obtained by considering the system (1.2) in the
new variables

t̄ = t, x̄ = r(x, u), ȳ = y, ū = u, v̄ = v, h̄ = h,

6
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where r(x, u) = −(λ1u + λ2v)t + λ1
1x + λ1

2y and the functions λi , i = 1, 2, are allowed
to depend on u, v, h. Following proposition 1, we look for solutions invariant under the
vector fields

X1 = λ1∂t + (λ1u + λ2v)∂x, X2 = λ2∂t + (λ1u + λ2v)∂y. (3.17)

The transformed system (3.12) reads

gλ1hr = 0, gλ2hr = 0, (λ1ur + λ2vr)h = 0. (3.18)

To obtain a nontrivial solution, we must have h = h0 ∈ R
+ together with the relation

λ1ur + λ2vr = 0. (3.19)

For example, if λ1 and λ2 are constant, we can express u in terms of v and obtain the
explicit solution

u = u0 − λ2

λ1
v(r), v = v(r), h = h0, r = −u0λ1t + λ1x + λ2y,

λ1 �= 0, h0 ∈ R
+,

where λ2 is an arbitrary constant and v(r) is an arbitrary function.
When the λi are not constant, different choices can lead to solutions for the velocity

vector fields u(r) and v(r) which are of distinct nature. For example, consider the choice
λ1 = u, λ2 = v, leading to

uur + vvr = 1
2 (u2 + v2)r = 0 ⇒ u2 + v2 = C2, C ∈ R.

A periodic solution is obtained by choosing

u = C sin r, v = C cos r, h = h0, C ∈ R, (3.20)

where the Riemann invariant is given implicitly by

r = −C(Ct − x sin r − y cos r). (3.21)

When λ1 = v, λ2 = u, equation (3.19) implies

vur + uvr = (uv)r = 0 ⇒ v = C

u(r)
, C ∈ R.

We then get the solution

u = u(r), v = C

u(r)
, h = h0 ∈ R, r = −2Ct +

C

u(r)
x + u(r)y, (3.22)

where u(r) is an arbitrary function of the Riemann invariant r.
(ii) Similarly, simple acoustic-type waves are obtained by considering the system (1.2) in the

new variables

t̄ = t, x̄ = r(x, u), ȳ = y, ū = u, v̄ = v, h̄ = h,

where r(x, u) = −(λ1u+λ2v+
√

gh)t +λ1
1x+λ1

2y, |�λ|2 = 1, and the functions λi , i = 1, 2,
are allowed to depend on u, v, h. Rank-1 solutions of this type are invariant under the
vector fields

X1 = λ1∂t + (λ1u + λ2v +
√

gh)∂x, X2 = λ2∂t + (λ1u + λ2v +
√

gh)∂y. (3.23)

In this case, the transformed system (3.12) is

λ1

√
g

h
hr = ur, λ2

√
g

h
hr = vr, h(λ1ur + λ2vr) =

√
ghhr . (3.24)

7
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Table 2. Rank-1 solutions of the SWW equation (1.2). The functions S(·) and C(·) are the sine
and cosine Fresnel integrals.

Type Solution Riemann invariant Comments

1.E u = u0 − λ2
λ1

ϕ(r) r = −u0λ1t + λ1x + λ2y ϕ : R → R

v = ϕ(r) λi, u0 ∈ R

h = h0 h0 ∈ R
+

2.E u = C sin r r = C(−Ct + x sin r + y cos r) C ∈ R

v = C cos r h0 ∈ R
+

h = h0

3.E u = ϕ(r) r = −2Ct + C

ϕ(r)
x + u(r)y ϕ : R → R

v = C/ϕ(r) C ∈ R

h = h0 h0 ∈ R
+

4.S u = u0 + 2λ1
√

gϕ(r) r = −(λ1u0 + λ2v0 + 3
√

gh)t + λ1x + λ2y ϕ : R → R

v = v0 + 2λ2
√

gϕ(r) λi, u0, v0 ∈ R

h = ϕ(r)2

5.S u = u0 − 2
√

g cos ϕ(r) r = −(u0 sin(ϕ(r)) + v0 cos(ϕ(r)) ϕ : R → R

v = v0 + 2
√

g sin ϕ(r) +
√

g(ϕ(r) + h0))t + sin(ϕ(r))x + cos(ϕ(r))y u0, v0 ∈ R

h = (ϕ(r) + h0)
2 h0 ∈ R

+

6.S u = u0 +
√

2πgS
(√

2ϕ(r)

π

)
r = −

(
sin(ϕ(r))

(
u0 +

√
2πgS

(√
2ϕ(r)

π

))
ϕ : R → R

+

v = v0 +
√

2πgC
(√

2ϕ(r)

π

)
+ cos(ϕ(r))

(
v0 +

√
2πgC

(√
2ϕ(r)

π

))
u0, v0 ∈ R

h = (
√

ϕ(r) + h0)
2 +

√
g(

√
ϕ(r) + h0)

)
t + sin(ϕ(r))x + cos(ϕ(r))y h0 ∈ R

+

The third equation is automatically satisfied whenever the first two are and |�λ|2 = 1. Note
that in order to obtain a solution for h(r), it is necessary that the relation

λ1(u, v, h)vr − λ2(u, v, h)ur = 0 (3.25)

be satisfied. Considering different choices for the functions λi(u, v, h), we obtain several
interesting solutions, presented in table 2.

For illustration, we now turn to the construction of the implicit solution of the RSWW
equations corresponding to (3.20), (3.21) using transformation (1.3). We first transform the
Riemann invariant r to obtain an implicit equation for r̃:

r̃ = C2

2�
cot (�t) +

C

2
[(y − x cot (�t)) sin r̃ − (x + y cot (�t)) cos r̃]. (3.26)

Using equations (3.16), we obtain the implicit solution of the RSWW equations

u = −C cos r̃ − C cot (�t) sin r̃ + �(y + x cot (�t)),

v = C sin r̃ − C cot (�t) cos r̃ − �(y + x cot (�t)),

h = h0 csc2 (�t),

(3.27)

where r̃ is the solution of the implicit equation (3.26). This solution has period π/� and
goes to infinity at every time t = kπ/�, k ∈ N. Nevertheless, due to the invariance of
equations (1.1) with respect to translations in time, it is possible to use a time shift t → t + t0

8
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Table 3. Rank-2 solutions of the SWW equations.

Type Riemann invariants Solution Comments

ES r1 = λ1
2(v)((2G(s) +

√
3εF (r2))t u =

√
3

3 εG(s) + F(r2) h0 ∈ R
+, ε2 = 1

− √
3εx − y)

r2 =
(

3
2 F(r2) + h0

2

)
t − x v = G(s) F,G : R → R

s = r2 −
√

3ε

2λ1
2(G(s))

r1 h = 1
4g

(
F(r2) λ1

2 : R → R

− 2
√

3
3 εG(s) + h0

)2

SS r1 = −
(
λ1

1u0 + λ1
2v0 u = u0 + 2

√
g
(
λ1

1h1(r
1) u0, v0, λ

i
j ∈ R, |�λi | = 1

+ 3
√

gh1(r
1)

)
t + λ1

1x + λ1
2y + ελ2

1h2(r
2)

)
r2 = −

(
λ2

1u0 + λ2
2v0 v = v0 + 2

√
g
(
λ1

2h1(r
1) h1, h2 : R → R

+ 3ε
√

gh2(r
2)

)
t + λ2

1x + λ2
2y + ελ2

2h2(r
2)

)
h = (h1(r

1) + h2(r
2))2 �λ1 · �λ2 = −ε/2, ε2 = 1

so that equations (3.26) are well defined in a neighborhood of length π/� around t = 0. For
example, the translation t → t + π

2�
gives the solution

u = −C cos r̄ + C tan (�t) sin r̄ + �(y − x tan (�t)),

v = C sin r̄ + C tan (�t) cos r̄ − �(y − x tan (�t)),

h = h0 sec2 (�t),

(3.28)

where r̄ satisfies the equation

r̄ = − C2

2�
tan (�t) +

C

2
[(y + x tan (�t)) sin r̄ − (x − y tan (�t)) cos r̄], (3.29)

which is clearly defined in the interval
(− π

2�
, π

2�

)
. Note that this process can be applied to

every solution presented in table 2 to generate local solutions of the RSWW equations defined
around t = 0.

3.2. Rank-2 solutions

The construction of rank-2 solutions is much more involved than that in the case k = 1 since it
requires us to solve the system (3.13), which is composed of at most 12 independent nonlinear
partial differential equations, compared to only three equations. However, we now show that
the task is undertakable and leads to interesting solutions. The results of this analysis are
summarized in tables 3 and 4.

(i) We first look for rank-2 solutions resulting from the interaction of two entropic-type
solutions. They are invariant under the vector field

X = ∂t + u∂x + v∂y. (3.30)

In the variables
t̄ = t, x̄1 = r1(x, u), x̄2 = r2(x, u), ū = u, v̄ = v, h̄ = h,

ri(x, u) = t − λi
1

λi
1u + λi

2v
x − λi

2

λi
1u + λi

2v
y, i = 1, 2,

(3.31)
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Table 4. Rank-2 solutions of the RSWW equations.

Type Riemann invariants Solution Comments

ES r1 = λ1
2(G(s̃))

(
− 1

2�
(2G(s) +

√
3εF (r2)) cot (�t) u = −

(√
3

3 εG(s) + F(r2)
)

cot (�t) − G(s) + �(y + x cot (�t)) h0 ∈ R
+, ε2 = 1

−
√

3
2 ε(y − x cot (�t)) + 1

2 (x + y cot (�t))
)

v =
√

3
3 εG(s) + F(r2) − G(s) cot (�t) − �(x − y cot (�t)) F, G : R → R

r2 = − 1
4�

(3F(r2) + h0) cot (�t) − 1
2 (y − x cot (�t)), h = 1

4g

(
F(r2) − 2

√
3

3 εG(s) + h0

)2
csc2 (�t) λ1

2 : R → R

s = r2 −
√

3ε

2λ1
2(G(s))

r1

SS r1 = 1
2

[
1
�

(
λ1

1u0 + λ1
2v0 + 3

√
gh1(r

1)
)

cot (�t) u = −(u0 + 2
√

g(λ1
1h1(r

1) + ελ2
1h2(r

2))) cot (�t), u0, v0, λ
i
j ∈ R,

+ λ1
1(y − x cot (�t)) − λ1

2(x + y cot (�t))
]

− (v0 + 2
√

g(λ1
2h1(r

1) + ελ2
2h2(r

2))) + �(y + x cot (�t)) h1, h2 : R → R

r2 = 1
2

[
1
�

(
λ2

1u0 + λ2
2v0 + 3ε

√
gh2(r

2)
)

cot (�t) v = −(v0 + 2
√

g(λ1
2h1(r

1) + ελ2
2h2(r

2))) cot (�t) �λ1 · �λ2 = −ε/2

+ λ2
1(y − x cot (�t)) − λ2

2(x + y cot (�t))
]

+u0 + 2
√

g(λ1
1h1(r

1) + ελ2
1h2(r

2)) − �(x − y cot (�t)) |�λi | = 1, ε2 = 1

h = (h1(r̃
1) + h2(r̃

2)) csc2(�t)

10
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equation (3.13(i)) reads

λ1
1

(
λ2

1u + λ2
2v

)
hr1 + λ2

1

(
λ1

1u + λ1
2v

)
hr2 = 0, (3.32)

λ1
2

(
λ2

1u + λ2
2v

)
hr1 + λ2

2

(
λ1

1u + λ1
2v

)
hr2 = 0, (3.33)(

λ2
1u + λ2

2v
)(

λ1
1ur1 + λ1

2vr1

)
+

(
λ1

1u + λ1
2v

)(
λ2

1ur2 + λ2
2vr2

) = 0. (3.34)

A solution to the first two equations exists if and only if(
λ1

1λ
2
2 − λ1

2λ
2
1

)(
λ1

1u + λ1
2v

)(
λ2

1u + λ2
2v

) = 0 or h = h0 ∈ R
+.

The conditions on the functions λi
j imply that either the wave vectors are parallel or one

of the considered waves has zero velocity. From these conditions, we now show that no
rank-2 solution can be built from this type of interaction.

When �λ2 = k�λ1, the Riemann invariants r1 and r2 are equal; hence, the solution
cannot be of rank 2. Therefore, we look for solutions with h = h0, a positive constant.
Equation (3.34) implies that

ur1 = − 1

λ1
1

λ1
1u + λ1

2v

λ2
1u + λ2

2v

(
λ2

1ur2 + λ2
2vr2

) − λ1
2

λ1
1

vr1 . (3.35)

We then consider the linear combination
1

uv
Tr

[
A3 ∂f

∂r
(uη1 + vη2)

∂f

∂r
λ

]
= − 2

uv

(
λ1

1u + λ1
2v

) (
λ2

1u + λ2
2v

) (
λ1

1λ
2
2 − λ1

2λ
2
1

)
× ((

λ1
1u + λ1

2v
)(

λ2
1ur2 + λ2

2vr2

)
vr2 +

(
λ2

1u + λ2
2v

)(
λ1

1ur2 + λ1
2vr2

)
vr1

)
,

(3.36)

implying that a rank-2 solution must satisfy(
λ1

1u + λ1
2v

)(
λ2

1ur2 + λ2
2vr2

)
vr2 +

(
λ2

1u + λ2
2v

)(
λ1

1ur2 + λ1
2vr2

)
vr1 = 0. (3.37)

When λ2
1ur2 + λ2

2vr2 = 0, equation (3.35) requires that

ur1 = −λ1
2

λ1
1

vr1 , vr2 = −λ2
1

λ2
2

ur2 ,

so that (3.37) becomes

1

λ2
2

(
λ2

1u + λ2
2v

)(
λ1

1λ
2
2 − λ2

1λ
1
2

)
ur2vr1 = 0,

leading necessarily to a rank-1 solution. Hence we can solve (3.37) for vr2 , and expression
(3.35) for ur1 implies that

ur2

ur1
= vr2

vr1
= −

(
λ2

1u + λ2
2v

) (
λ1

1ur2 + λ1
2vr2

)
(
λ1

1u + λ1
2v

) (
λ2

1ur2 + λ2
2vr2

) ; (3.38)

hence, we must have v = F(u), for an arbitrary function F : R → R. But this implies that
the Jacobian matrix of the solution is of rank 1, since h = h0. Thus, no rank-2 solution of
type EE exists. For example, consider the simplest case when λ1

1 = λ2
2 = 1, λ1

2 = λ2
1 = 0.

The Riemann invariants are then given by

r1 = t − x

u
, r2 = t − y

v
.

Equations (3.35) and (3.37) become

uvr2 + vur1 = 0, uvr2
2 + vur2vr1 = 0. (3.39)

11
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Solving for vr1 and vr2 , we obtain that the rank of the Jacobian matrix

J = ∂(u, v, h)

∂(r1, r2)
=

⎛
⎜⎜⎜⎝

ur1 ur2

−v

u

ur1
2

ur2
− v

u
ur1

0 0

⎞
⎟⎟⎟⎠ (3.40)

is equal to 1. A particular solution of (3.39) is given by

u = (−1)msm, m �= −1, s = C1r
2 + C2

C3r1 + C4
, Ci ∈ R, i = 1, . . . , 5,

v = C5exp

(
C3

C1
ms

)
, h = h0 ∈ R

+,

(3.41)

which is indeed seen to depend on the single variable s.
(ii) We now look for interactions of a solution of each type. This type of solution is invariant

under the vector field

X = δ∂t +
(
δu − λ1

2

√
gh

)
∂x +

(
δv − λ1

1

√
gh

)
∂y, δ = λ1

1λ
2
2 − λ1

2λ
2
1. (3.42)

Introducing the change of variables

t̄ = t, x̄1 = r1(x, u), x̄2 = r2(x, u), ū = u, v̄ = v, h̄ = h,

with

r1(x, u) = t − λ1
1

λ1
1u + λ1

2v
x − λ2

1

λ1
1u + λ1

2v
y,

r2(x, u) = t − λ2
1

λ2
1u + λ2

2v +
√

gh
x − λ2

2

λ2
1u + λ2

2v +
√

gh
y,

(3.43)

we show that rank-2 solutions can be built by setting λ2
1 = 1, λ2

2 = 0. Supposing that
λ1

1, λ
1
2 �= 0, equations (3.13) require that

ur1 = − λ1
1

2 − λ1
2

2

λ1
2

(
λ1

1
2

+ λ1
2

2)vr2 , vr1 = − 2λ1
1

λ1
1

2
+ λ1

2
2 vr2 ,

hr1 =
√

gh

λ1
2g

vr2 , hr2 =
√

gh

λ1
2g

(
λ1

2ur2 − λ1
1vr2

)
,

(
3λ1

2
2 − λ1

1
2)((

λ1
2

2 − λ1
1

2)
vr2 + 2λ1

1λ
1
2ur2

) = 0,((
λ1

2
2 − λ1

1
2)

vr2 + 2λ1
1λ

1
2ur2

)(√
ghλ1

1,u + hλ1
1,h

) = 0,((
λ1

2
2 − λ1

1
2)

vr2 + 2λ1
1λ

1
2ur2

)(√
ghλ1

2,u + hλ1
2,h

) = 0.

(3.44)

It is easily computed from equations (3.44) that when
(
λ1

2
2 − λ1

1
2)

vr2 + 2λ1
1λ

1
2ur2 = 0,

the obtained solution will be of rank 1. Thus, we must have λ1
1 = F1(u − 2

√
gh, v),

λ1
2 = F2(u − 2

√
gh, v) where F1, F2 are arbitrary functions. Equations (3.44) can be

solved for specific choices of the arbitrary functions F1, F2. Hence we consider the case
where

(
λ1

2
2 − λ1

1
2)

vr2 + 2λ1
1λ

1
2ur2 �= 0, together with the relation λ1

1 = √
3ελ1

2, ε = ±1,
which leads to

ur1 = − 1

2λ1
2

vr2 , (3.45)

12
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vr1 = −
√

3ε

2λ1
2

vr2 , (3.46)

hr1 = 1

λ1
2

√
h

g
vr2 , hr2 =

√
h

g
(ur2 −

√
3εvr2), (3.47)

√
ghλ1

2,u + hλ1
2,h = 0. (3.48)

When λ1
2 is a function of v only, the system (3.45)–(3.48) is compatible and can be

integrated to yield

u =
√

3

3
εv(r1, r2) + F(r2), h = 1

4g

(
F(r2) − 2

√
3

3
εv(r1, r2) + h0

)2

, (3.49)

where v(r1, r2) is given implicitly by

v = G(s), s = r2 −
√

3ε

2λ1
2(v)

r1, (3.50)

and G(s) is an arbitrary function of its argument. The Riemann invariants r1 and r2 then
satisfy the implicit relations

r1 = λ1
2(G(s))((2G(s) +

√
3εF (r2))t −

√
3εx − y), s = r2 −

√
3ε

2λ1
2(v)

r1,

ε = ±1, r2 =
(

3

2
F(r2) +

h0

2

)
t − x.

(3.51)

Because of the nonlinear coupling of the Riemann invariants (3.51), this type of solution is
said to be scattering. For different choices of the function λ1

2 and the profile of v (i.e. G(s)),
following the construction presented in [4], it is possible to construct rank-2 solutions
which are bounded everywhere, for example bumps, kinks and periodic solutions, even
when the Riemann invariants admit the gradient catastrophe after a finite time. We present
in table 5 several solutions of the SWW equations obtained in this way. According to
equations (1.3), after a time shift t → t +π/2�, the RSWW equations admit the following
solution:

u = −
(√

3

3
εG(s̃) + F(r̃2)

)
tan (�t) − G(s̃) + �(y + x tan (�t)), ε = ±1,

v =
√

3

3
εG(s̃) + F(r̃2) − G(s̃) tan (�t) − �(x − y tan (�t)),

h = 1

4g

(
F(r̃2) − 2

√
3

3
εG(s̃) + h0

)2

sec2 (�t),

(3.52)

where the functions r̃1, r̃2, s̃ now satisfy the implicit relations

r̃1 = λ1
2(G(s̃))

(
− 1

2�
(2G(s̃) +

√
3εF (r̃2)) tan (�t)

−
√

3

2
ε(y − x tan (�t)) +

1

2
(x + y tan (�t))

)
,

r̃2 = − 1

4�
(3F(r̃2) + h0) tan (�t) − 1

2
(y − x tan (�t)), s̃ = r̃2 −

√
3ε

2λ1
2(G(s̃))

r̃1,

(3.53)
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Table 5. Examples of bounded rank-2 solutions of the SWW equations. The function ℘(·, g2, g3) is the elliptic Weierstrass ℘ function with invariants g2,g3.

No Riemann invariants Solution Comments

1. r1 = (2 tanh2 (s) +
√

3 tanh2 (r2))t − √
3x − y u =

√
3

3 tanh2 (s) + tanh2 (r2) Anti-bump

r2 =
(

3
2 tanh2 (r2) + h0

2

)
t − x v = tanh2 (s)

s = r2 −
√

3
2 r1 h = 1

4g

(
tanh2 (r2) − 2

√
3

3 tanh2 (s) + h0

)2

2. r1 = (2sech2(s) +
√

3sech2(r2))t − √
3x − y u =

√
3

3 sech2(s) + sech2(r2) Bump

r2 =
(

3
2 sech2(r2) + h0

2

)
t − x v = sech2(s)

s = r2 −
√

3
2 r1 h = 1

4g

(
sech2(r2) − 2

√
3

3 sech2(s) + h0

)2

3. r1 = −(u0 + 3
√

g sech2(r1))t + x u = u0 + 2
√

g
(

sech2(r1) − 1
2 sech2(r2)

)
Bump

r2 = −
(
− u0

2 +
√

3
2 v0 + 3

√
g sech2(r2)

)
t − 1

2 x +
√

3
2 y v = v0 +

√
3g sech2(r2) u0, v0 ∈ R

h = (sech2(r1) + sech2(r2))2

4. r1 = −
(
u0 + 3

√
gA1r1√

1+B1(r1)2

)
t + x u = u0 + 2

√
g
(

A1r1√
1+B1(r1)2

− A2r2

2
√

1+B2(r2)2

)
Kink

r2 = −
(
− u0

2 +
√

3
2 v0 + 3

√
gA2√

1+B2(r2)2

)
t − 1

2 x +
√

3
2 y v = v0 +

√
3gA2√

1+B2(r2)2
u0, v0, A1, A2 ∈ R

h =
(

A1r1√
1+B1(r1)2

+ A2r2√
1+B2(r2)2

)2
B1, B2 ∈ R

+

5. r1 = −
(
u0 + 3

√
gA1

℘(r1, 4
3 , 8

27 + 4
3 A4

1)

)
t + x u = u0 + 2

√
g
(

A1

℘(r1, 4
3 , 8

27 + 4
3 A4

1)
− 1

2
A2

℘(r2, 4
3 , 8

27 + 4
3 A4

2)

)
Periodic

r2 = −
(
− u0

2 +
√

3
2 v0 + A2

℘(r2, 4
3 , 8

27 + 4
3 A4

2)

)
t − 1

2 x +
√

3
2 y v = v0 + A2

℘(r2, 4
3 , 8

27 + 4
3 A4

2)
u0, v0, A1, A2 ∈ R

h =
(

A1

℘(r1, 4
3 , 8

27 + 4
3 A4

1)
+ A2

℘(r2, 4
3 , 8

27 + 4
3 A4

2)

)2

14
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and G(s̃), λ1
2(G(s̃)) and F(r̃2) are the arbitrary functions of their respective argument.

Equations (3.52) and (3.53) define a rank-2 solution in the interval
(− π

2�
, π

2�

)
. From

bounded solutions of the SWW equations (see table 5), one can then construct rank-2
solutions of the RSWW equations which are bounded in this interval.

(iii) We now turn to the analysis of the interaction of two acoustic-type solutions. Therefore,
introducing the change of variables

t̄ = t, x̄1 = r1(x, u), x̄2 = r2(x, u), ū = u, v̄ = v, h̄ = h,

with

ri(x, u) = −(
λi

1u + λi
2v +

√
gh

)
t + λi

1x + λi
2y, |�λi |2 = 1, i = 1, 2,

the system (3.13) is formed of 12 independent equations. Equation (3.13(i)) is in this case

g
(
λ1

1hr1 + λ2
1hr2

) =
√

gh(ur1 + ur2), (3.54)

g
(
λ1

2hr1 + λ2
2hr2

) =
√

gh(vr1 + vr2), (3.55)

h
(
λ1

1ur1 + λ2
1ur2 + λ1

2vr1 + λ2
2vr2

) =
√

gh(hr1 + hr2). (3.56)

A process of elimination of the derivatives of the functions λi
j (u, v, h) in (3.13(ii)) leads

us to a system composed of

(ur1 + ur2)
(
λ1

2ur1 − λ1
1vr1 + λ2

2ur2 − λ2
1vr2

) = 0,

(vr1 + vr2)
(
λ1

2ur1 − λ1
1vr1 + λ2

2ur2 − λ2
1vr2

) = 0,
(3.57)

and a third complicated expression which takes a much simpler form depending on the
branch of solution chosen in (3.57).

(a) If u(r1, r2) = F(r1 − r2) and v(r1, r2) = G(r1 − r2), then the last equation is
automatically satisfied. The solution is obtained from the system(
λ1

1 − λ2
1

)
F ′ +

(
λ1

2 − λ2
2

)
G′ = 0, |�λi |2 = 1, h = h0 ∈ R

+. (3.58)

However, it should be noted that any solution built from this branch reduces to a rank-1
entropic-type solution. Indeed, since h = h0, by equations (3.54) and (3.55), the Jacobian
matrix of the solution in the original variables reads∣∣∣∣∣∣∣

F ′(r1 − r2)
(
r1
t − r2

t

) −F ′(r1 − r2)
(
r1
x − r2

x

)
G′(r1 − r2)

(
r1
t − r2

t

) −G′(r1 − r2)
(
r1
x − r2

x

)
0 0

∣∣∣∣∣∣∣ ,
which is manifestly of rank 1. Moreover, it can be easily seen that the resulting rank-1
solution will be a solution of the first type. For example, choosing

λ1
1 = 1, λ1

2 = 0, λ2
1 = 1 − u2

1 + u2
, λ2

2 = 2u

u2 + 1
,

we obtain the solution

v = v0 + 1
2u2, h = h0,

where u = F(s) is an arbitrary function of

s = r1 − r2 = −F(F 2 − 2v0)

1 + F 2
t +

2F 2

1 + F 2
x − 2F

1 + F 2
y.

15



J. Phys. A: Math. Theor. 43 (2010) 235205 B Huard

(b) When λ1
2ur1 − λ1

1vr1 + λ2
2ur2 − λ2

1vr2 = 0, the last equation reduces to

[2δ2 + (�λ1 · �λ2) − 1]vr1vr2 = 0, δ =
∣∣∣∣λ1

1 λ1
2

λ2
1 λ2

2

∣∣∣∣ , |�λi |2 = 1. (3.59)

The solution is necessarily of rank 1 if vr1 = 0 or vr2 = 0. We then suppose that v

depends essentially on r1 and r2, so the wave vectors �λ1 and �λ2 must satisfy the relations

2δ2 + (�λ1 · �λ2) − 1 = 0, |�λi |2 = 1, i = 1, 2. (3.60)

Writing λ1
1 = sin ϕ1, λ

1
2 = cos ϕ1, λ

2
1 = sin ϕ2, λ

2
2 = cos ϕ2, equation (3.60) implies that

the angle ϕ = |ϕ1 − ϕ2| ∈ [0, 2π) between the wave vectors �λ1 and �λ2 has to satisfy

2 sin2 ϕ + cos ϕ − 1 = 0,

which can be written as

−2
(
cos ϕ + 1

2

)
(cos ϕ − 1) = 0.

Therefore, excluding the case where ϕ = 0, we obtain

cos ϕ = �λ1 · �λ2 = −1/2 ⇒ ϕ = |ϕ1 − ϕ2| = 2π/3, (3.61)

in accordance with results already obtained for an isentropic fluid flow [9, 15]. In this case,
since by (3.60) and (3.61) we must have δ = ε

√
3/2, ε = ±1, one can show that the system

composed of (3.54)–(3.57) becomes

ur1 = λ1
1

√
g

h
hr1 , ur2 = λ2

1

√
g

h
hr2 , vr1 = λ1

2

√
g

h
hr1 , vr2 = λ2

2

√
g

h
hr2 ,

(3.62)

and that the functions λi
j must satisfy the equations

λ1
1λ

2
1,u + λ1

2λ
2
1,v +

h√
gh

λ2
1,h = 0, λ2

1λ
1
1,u + λ2

2λ
1
1,v +

h√
gh

λ1
1,h = 0. (3.63)

Using (3.63) and writing h = H(r1, r2)2, the compatibility conditions of equations (3.62)
yield the relation

Hr1r2 = 0 ⇒ h(r1, r2) = (h1(r
1) + h2(r

2))2. (3.64)

When the velocity vectors �λ1 and �λ2 are constant, integration of (3.62) then shows that the
velocity vector fields split as a linear sum. Hence, we obtain the nonscattering solution

u = u0 + 2
√

g
(
λ1

1h1(r
1) + λ2

1h2(r
2)

)
, v = v0 + 2

√
g
(
λ1

2h1(r
1) + λ2

2h2(r
2)

)
,

h = (
h1(r

1) + h2(r
2)

)2
,

(3.65)

where the functions h1(r
1) and h2(r

2) are the arbitrary functions of the Riemann invariants

r1 = −(
λ1

1u0 + λ1
2v0 + 3

√
gh1(r

1)
)
t + λ1

1x + λ1
2y, λi

j ∈ R, |�λi |2 = 1,

r2 = −(
λ2

1u0 + λ2
2v0 + 3

√
gh2(r

2)
)
t + λ2

1x + λ2
2y, �λ1 · �λ2 = −1/2,

(3.66)

so that the angle between the vectors �λ1 and �λ2 is fixed by relation (3.61). Once more, these
arbitrary functions can be selected as to ensure that the solution remains bounded everywhere,
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see table 5. By means of transformation (1.3), we obtain the solution of the RSWW
equations (1.1) corresponding to solution (3.65). It is given by

u = −(
u0 + 2

√
g
(
λ1

1h1(r̃
1
)

+ λ2
1h2(r̃

2)
)

cot (�t)

− (
v0 + 2

√
g
(
λ1

2h1(r̃
1) + λ2

2h2(r̃
2)

))
+ �(y + x cot (�t)),

v = u0 + 2
√

g
(
λ1

1h1(r̃
1) + λ2

1h2(r̃
2)

) − (
v0 + 2

√
g
(
λ1

2h1(r̃
1) + λ2

2h2(r̃
2)

))
× cot (�t) − �(x − y cot (�t)),

h = (h1(r̃
1) + h2(r̃

2)) csc2(�t),

(3.67)

where the transformed Riemann invariants r̃1, r̃2 satisfy the implicit relations

r̃1 = 1

2

[
1

�

(
λ1

1u0 + λ1
2v0 + 3

√
gh1(r̃

1)
)

cot (�t) + λ1
1(y − x cot (�t)) − λ1

2(x + y cot (�t))

]
,

r̃2 = 1

2

[
1

�

(
λ2

1u0 + λ2
2v0 + 3

√
gh2(r̃

2)
)

cot (�t) + λ2
1(y − x cot (�t)) − λ2

2(x + y cot (�t))

]
.

(3.68)

Again, it is interesting to note that due to the invariance of equations (1.1) with respect to
translations in time, it is possible to use a time translation t → t + t0 so that equations (3.68)
are well defined for t = 0. For example, when functions h1(r

1), h2(r
2) are assumed to be

hyperbolic functions of their respective argument, i.e. h1(r
1) = sech2(r1), h2(r

2) = sech2(r2),
and if we choose �λ1 = (1, 0) and �λ2 = (−1/2,

√
3/2), then we obtain after a time shift

t → t + π/2� the singular bump-type solution

u = (u0 +
√

g(2 sech2(r1) − sech2(r2))) tan (�t)

− (v0 +
√

3g sech2(r2)) + �(y − x tan (�t)),

v = (v0 +
√

3g sech2(r2)) tan (�t) +
√

g(2sech2(r1) − sech2(r2))

−�(x + y tan (�t)),

h = (sech2(r1) + sech2(r2))2 sec2(�t)

(3.69)

with

r1 = 1

2�
(u0 + 3

√
gsech2(r1)) tan (�t) +

1

2
(y − x tan (�t)),

r2 = 1

2�

(
u0

2
+

√
3

2
v0 + 3

√
gsech2(r2)

)
tan (�t)

− 1

4
(y − x tan (�t)) −

√
3

4
(x + y tan (�t)).

(3.70)

Figure 1 illustrates the behavior of the height function h(t, x, y) defined by (3.69)
and (3.70).

When the λi
j are not constant, equations (3.63) possess several classes of implicit solutions.

Supposing that

λ1
1 = �√

1 + �2
, λ1

2 = 1√
1 + �2

, (3.71)

for some function � : R
3 → R, equation (3.59) requires that

λ2
1 = −1

2

� +
√

3√
1 + �2

, λ2
2 = 1

2

√
3� − 1√
1 + �2

. (3.72)
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Figure 1. Graph of the height function h(t, x, y) for the rank-2 solution of the SS type (3.69) at
times t = −π/5 and t = 0.

The system (3.63) then becomes

��u + �v +
h√
gh

√
�2 + 1�h = 0,

−(
√

3 + �)�u + (
√

3� − 1)�v +
2h√
gh

√
1 + �2�h = 0,

(3.73)

implying that � must satisfy

(1 +
√

3�)�u + (
√

3 − �)�v = 0. (3.74)

It is easy to show from (3.73) that 
 is either constant or depends essentially on all functions
u, v, h. Looking for a solution of the form � = F(γ1(�)u + γ2(�)v − φ(h)), where φ(h)

is some function of h to be determined, we obtain that equations (3.73) possess the implicit
solution

� = F((� −
√

3)u + (1 +
√

3�)v − 2
√

1 + �2
√

gh), (3.75)

where F is an arbitrary function of its argument. Equations (3.73) also possess infinite classes
of solutions of the form

� = F(s1, s2), s1 = γ1(�)u − 2
√

gh, s2 = γ2(�)v − 2
√

gh. (3.76)

The compatibility relation (3.74) requires that

∂F

∂s1
= (� − √

3)γ2(�)

(1 +
√

3�)γ1(�)

∂F

∂s2
= G(s1, s2)

∂F

∂s2
, (3.77)

for some function G(s1, s2). Equations (3.73) then become

γ1(�)(
√

3�2 − 2� −
√

3) + γ2(�)(�2 − 2
√

3� + 3)

+ γ1(�)γ2(�)
√

1 + �2(
√

3 − �) = 0. (3.78)

For a selected function G(s1, s2), solving equations (3.78) and

G(s1, s2) = (� − √
3)γ2(�)

(1 +
√

3�)γ1(�)

gives the explicit expressions for γ1(�) and γ2(�) while integration of (3.77) gives the
dependence of F on s1 and s2. For example, when G(s1, s2) = 1, � = F(γ1(�) + γ2(�) −
4
√

gh), with

γ1(�) = 2

√
3�3 − 5�2 +

√
3� + 3

(
√

3�2 − 2� − √
3)

√
1 + �2

,

γ2(�) = 2
3�4 − 4

√
3�3 − 2�2 + 4

√
3� + 3

(
√

3�3 − 5�2 +
√

3� + 3)
√

1 + �2
,

(3.79)

and F arbitrary.
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From any explicit solution of (3.63) obtained by specifying the arbitrary function in (3.75)
or in (3.76) and (3.77) and using the relations (3.71), (3.72), the solution for the vector fields
u(r1, r2), v(r1, r2) is obtained by integrating the system (3.62). However, since the resulting
expressions are very involved even in the simplest cases, we will not present a solution of this
type in closed form.

(iv) Finally, conducting an analysis similar to that of the previous case, we finally look for
linear interactions of two acoustic-type waves of constant direction for which we choose
different signs for ε in (3.4(ii)). Suppose that in this case the Riemann invariants are given
in the form

r1 = −(
λ1

1u + λ1
2v +

√
gh

)
t + λ1

1x + λ1
2y, λi

j ∈ R,

r2 = −(
λ2

1u + λ2
2v −

√
gh

)
t + λ2

1x + λ2
2y, |�λi | = 1, i = 1, 2.

(3.80)

Writing λ1
1 = sin ϕ1, λ

1
2 = cos ϕ1, λ

2
1 = sin ϕ2, λ

2
2 = cos ϕ2, where ϕ1, ϕ2 are constant,

we find that a rank-2 solution invariant under

X = sin (ϕ1 − ϕ2)∂t + (sin (ϕ1 − ϕ2)u + (cos (ϕ1) + cos (ϕ2))
√

gh)∂x

+ (sin (ϕ1 − ϕ2)v − (sin (ϕ1) + sin (ϕ2))
√

gh)∂y (3.81)

exists if and only if the angle between ϕ1 and ϕ2 satisfies

|ϕ1 − ϕ2| = π

3
, (3.82)

in comparison with relation (3.61). This nonscattering rank-2 solution of the SWW
equations can be presented as

u = u0 + 2
√

g
(
λ1

1h1(r
1) − λ2

1h2(r
2)

)
, v = v0 + 2

√
g

(
λ1

2h1(r
1) − λ2

2h2(r
2)

)
,

h = (h1(r
1) + h2(r

2))2, u0, v0 ∈ R,

where the functions h1(r
1) and h2(r

2) are the arbitrary functions of the Riemann invariants

r1 = −(
λ1

1u0 + λ1
2v0 + 3

√
gh1(r

1)
)
t + λ1

1x + λ1
2y, λi

j ∈ R, �λ1 · �λ2 = 1/2,

r2 = −(
λ2

1u0 + λ2
2v0 − 3

√
gh2(r

2)
)
t + λ2

1x + λ2
2y, |�λi | = 1, i = 1, 2,

(3.83)

so that the angle between �λ1 and �λ2 satisfies (3.82). The similarity with solution (3.65) is not
surprising. It can in fact be obtained by considering the wave vector �λ2 in the opposite direction,
that is by setting �λ2 → −�λ2 in expressions (3.61), (3.65) and (3.66). The computation of the
corresponding solution of the RSWW equations is done analogously to that of the previous
case and the result is included in table 4.

4. Conclusion

In this work, we have extended the applicability of the conditional symmetry approach in
the context of Riemann invariants to a certain class of first-order inhomogeneous quasilinear
hyperbolic systems, namely those systems that are equivalent to a homogeneous one under
an invertible point transformation. Such classes of systems have been characterized recently
in the case of systems of two equations in two dependent and independent variables in [5]
and an algorithm to construct the appropriate point transformation was also given. The key
element in this analysis is the presence of an infinite-dimensional Lie algebra admitted by
every quasilinear homogenous system in two variables. Although this is not true in general
for multidimensional systems, we have been able to show that such a transformation exists for
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the rotating shallow water wave equations and after an analysis of the rank-k solutions of the
SWW equations, we used it to construct several of their implicit solutions expressed in terms of
Riemann invariants. While several classes of invariant solutions of the RSWW equations are
known, these new conditionally invariant solutions possess in general a considerable degree
of freedom in the sense that they depend on one or two arbitrary functions of the Riemann
invariants. Although it is possible in the case of a homogeneous system to select these arbitrary
functions so as to obtain bounded solutions for every value of the Riemann invariants, such
solutions could not be constructed here since the point transformation (1.3) is singular at times
t = π

2�
(2n + 1), n ∈ N. However, by using invariance under time translation, we have shown

that it is possible to construct solutions expressed in terms of Riemann invariants defined in a
finite interval around t = 0.

One may ask whether rank-k solutions of a given inhomogeneous system in the form (3.2)
can be constructed without relying on a point transformation bringing it to a homogeneous
form. A preliminary analysis shows that this type of solution would possess invariance
properties similar to those admitted by homogeneous systems, as expressed in proposition 1.
This study shall be addressed in a future work.
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